
CSE 451: Operating Systems

Spring 2022

Module 8

Memory Consistency

John Zahorjan

Preliminaries

• Q: What is a program?
• A1: Instructions for what to do
• A2: Instructions for what to compute

• Example:
• A = 10;

B = A + 8;

Do the compiled assembly/machine instructions include an add instruction?

Preliminaries (cont.)

• What are machine instructions?
• A1: What to do?
• A2: What effect to get?

• Example:
lw x3, 0(x2)
addi x3, x3, 1
sw x3, 0(x2)
lw x3, 4(x2)
addi x3, x3, 1
sw x3, 4(x2)

Preliminaries (cont.)
• Instruction Given Dependence

lw x3, 0(x2)
addi x3, x3, 1 read-after-write (RAW)
sw x3, 0(x2) read-after-write (RAW)
lw x3, 4(x2) write-after-read (WAR)
addi x3, x3, 1 read-after-write (RAW)
sw x3, 4(x2) read-after-write (RAW)

• Instruction Executed Dependence
lw x3, 0(x2)
addi x3, x3, 1 read-after-write (RAW)
sw x3, 0(x2) read-after-write (RAW)

lw x40, 4(x2)
addi x40, x40, 1 read-after-write (RAW)
sw x40, 4(x2) read-after-write (RAW)

Preliminaries (final)

• Q: What can the hardware know that the compiler can’t?
• A: Dynamic behavior of program

• What is in the cache right now?
• Was the conditional branch taken or not?

• Is this conditional branch usually taken or not taken?

• Has a load from memory completed yet?
• Is there an idle ALU right now?
• What the CPU hardware is (as contrasted with the CPU architecture)

Background: Cache Coherence
5.2.1 Cache Coherence and Sequential Consistency
Several definitions for cache coherence (also referred to as cache consistency) exist
in the literature. The strongest definitions treat the term virtually as a synonym for
sequential consistency. Other definitions impose extremely relaxed ordering
guarantees. Specifically, one set of conditions commonly associated with a cache
coherence protocol are: (1) a write is eventually made visible to all processors, and
(2) writes to the same location appear to be seen in the same order by all
processors (also referred to as serialization of writes to the same location) [13].
The above conditions are clearly not sufficient for satisfying sequential consistency
since the latter requires writes to all locations (not just the same location) to be
seen in the same order by all processors, and also explicitly requires that
operations of a single processor appear to execute in program order.
We do not use the term cache coherence to define any consistency model.
Instead, we view a cache coherence protocol simply as the mechanism that
propagates a newly written value to the cached copies of the modified location.
The propagation of the value is typically achieved by either invalidating (or
eliminating) the copy or updating the copy to the newly written value. With this
view of a cache coherence protocol, a memory consistency model can be
interpreted as the policy that places an early and late bound on when a new value
can be propagated to any given processor

From https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf

This Module’s Topic:
Memory Consistency

• “Memory consistency” is not the same as “cache coherence”
• Cache coherence is about the visibility of operations to the

same address

• Memory consistency is the set of rules that govern the visibility of
memory operations issued by multiple cores

• Memory consistency is about the visibility of operations to all
addresses

• What is the meaning of this code (as a single threaded program)?
• [initially A==B==0]

A = 1
print B
B = 1
print A

Program Order
• What is the meaning of this code (as a single threaded program)?

• [initially A==B==0]
A = 1
print B
B = 1
print A

• Prints 01

• The order in which the operations are expected to be executed is
called program order

Multiple Threads / Memory Consistency

• Suppose I have the same code, but implemented in two
threads

• What are the possible outcomes of running this code?

A = 1
print B

B = 1
print A

T1 T2

Sequential Consistency
• Sequential consistency is an ordering of all memory operations

that respects the program order of each thread

A = 1
print B

B = 1
print A

A = 1
print B
B = 1
print A

A = 1
B = 1
print B
print A

A = 1
B = 1
print A
print B

B = 1
print A
A = 1
print B

B = 1
A = 1
print A
print B

B = 1
A = 1
print B
print A

01 11 11 111101

Possible sequentially consistent executions:

Sequential Consistency
• Sequential consistency is the easiest ordering guarantee for

programmers to reason about
• It’s the natural extension of the model that applies to single threaded

programs

• Major programmer issue: race conditions
• Our example code produces two different results, depending on timing

• Major systems issue: code performance
• Insisting on program order for actual execution rules out applying some

useful (single threaded) code optimizations

• Major systems issue: hardware performance
• Insisting on program order for actual execution rules out applying some

useful hardware optimizations

Memory Consistency
• The general issue is what the rules are for re-ordering reads and

writes, relative to program order, even when they’re to distinct
memory addresses

• For instance, is it legal to execute these two instructions out of
program order?

write X
read Y

Earlier Instruction Later Instruction

read read

read write

write read

write write

Out of (Program) Order Execution: Compiler

• Both the hardware and the compiler sometimes “would like” to
execute instructions out of order

• For example, moving a later read before a write:

for (int i=0; i<N; i++) {
A[i] = A[i] + K;

}

<temp register> = K;
for (int i=0; i<N; i++) {

A[i] = A[i] + <temp register>;
}

The point is that the N-1 reads of K
were moved before writes they follow
in program order.

It isn’t about some other thread possibly
modifying K while the loop is in execution.

Out of (Program) Order Execution: Hardware

Core

Memory

Cache

• write X
read Y

• Suppose the write to X misses in
the cache

• Cache has to fetch cache line
containing X, which is slow

• Suppose the read of Y would be a
cache hit

• Why should the read of Y wait for
the write of X to complete?

What Can Happen if Reads Can Move Past
Writes?

A = 1
print B

B = 1
print A

A = 1
print B
B = 1
print A

A = 1
B = 1
print B
print A

A = 1
B = 1
print A
print B

B = 1
print A
A = 1
print B

B = 1
A = 1
print A
print B

B = 1
A = 1
print B
print A

Possible executions:

print B
print A
B = 1
A = 1

print A
print B
A = 1
B = 1

print B
print A
A = 1
B = 1

print A
print B
B = 1
A = 1

00 00 00 00

etc.

More Hardware Issues: Write Buffers

Core

Memory

Cache

Write buffer absorbs (limited)
bursts of writes.

When reading a memory
location, most recent value
written may be in:
• cache
• write buffer
• memory

So, single core always sees
“sequential consistency” for its
own writes
• the value it reads is the last

one it wrote
• as seen by its own reads,

writes happen in order

Write Buffer

But what about this?

Memory
banks

Multi-core

Suppose locations A and B start out with value 0.
Core 0 writes 1 to A and then 1 to B, and no one else writes.

Can core 0 read memory and find B==1 and A==0?
Can core 2 read memory and find B==1 and A==0?

Does each buffer
have to write back
in program order?

It gets even worse?

Memory
banks

Interconnection Network

There’s another ordering vs. performance issue:
Some write-back buffer may want to write X then Y in order, but the memory
bank for X is busy while the memory bank for Y is idle.

And Worse: Do all cores see writes
done in the same order?

Are writes “atomic”?

Re-ordering Summary

• The hardware would like to be free to re-order all operations,
respecting only data flow constraints

• The compiler would like to be free to re-order, but only in ways that
respects single-threaded data flow constraints

• X = Y + 3; Z = X/2; // cannot be reordered because data flows from 1st to 2nd

• Result:
• The hardware makes some kind of memory consistency guarantees
• The language (may) provide some kind of memory consistency guarantees
• The compiler is responsible for translating code written to language spec to

operate as expected on whatever the hardware provides

• It’s still very complicated

Can This Fail?

From WRL-95-7

Example: Total Store Ordering (TSO)

• Strongest of the consistency models (below sequential consistency)
• Implemented by x86

• Respects program order for
• read before read
• read before write
• write before write

• May not respect program order for
• write before read

Writing Correct Multithreaded Programs

• The language (may) provide some kind of memory consistency
guarantees

• The compiler is responsible for translating code written to language
spec to operate as expected on whatever the hardware provides

• It’s still very complicated

How Can You Possibly Cope?
• The compiler and/or hardware provides mechanisms to restrict

reordering
• Memory fence

• Memory fence acquire
• a read such that all reads and writes later in program order are executed

after in memory order

• Memory fence release
• a write such that all reads and writes that come before in program order are

also before in memory order

acquire

release

lock()/unlock() implementations do acquire/release

Programming Convention
• Guard all uses of shared memory with acquire/release pairs
• lock()/unlock() implementations do acquire/release

lock()
A = 1
print B
unlock()

lock()
B = 1
print A
unlock()

T1 T2

Possible Programming Convention

• Program in the style of monitors
• Encapsulate shared data structures in classes
• Synchronize all operations on the shared data structure, even just reads
• Acquire a lock at the beginning of each method, release it at the end

• Advantage:
• You can reason about your program as though execution guarantees

sequential consistency

• Disadvantages
• Locking issues: granularity, deadlock
• Performance issues

• locking overhead
• memory barrier costs

